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Abstract. The steady behavior of a rarefied gas in a circular pipe with a saw-like temperature distribution
increasing and decreasing periodically in the direction of the pipe axis is investigated numerically by means
of the direct simulation Monte Carlo method. It is shown that a steady one-way flow is induced in the pipe
without the help of a pressure gradient for a wide range of the Knudsen number when a series of ditches
is dug periodically in the part of the pipe wall with decreasing (or increasing) temperature. The features
of the flow are clarified in detail. It is also shown that the flow has a pumping effect. In particular, some
data that give the estimate of the maximum compression ratio attained by a pipe consisting of a large
number of periods are presented. The present study is the continuation of the previous study in the case
of a two-dimensional channel [Y. Sone et a/., Phys. Fluids 8, 2227 (1996)]. It is found that although the
induced one-way flow is stronger for the two-dimensional channel, the pumping effect is stronger for the
circular pipe.

INTRODUCTION

In a previous paper [1], the behavior of a rarefied gas in a two-dimensional channel between two plane walls
with a periodic temperature distribution was investigated numerically by the direct simulation Monte Carlo
(DSMC) method [2,3], and it was shown that a one-way flow is induced in the channel without the help of
a pressure gradient for a wide range of the Knudsen number when a series of ditches of a suitable shape is
dug periodically on the walls. The features of the flow and its pumping effect were clarified. This flow is of
practical importance for the following reason.

As is well known, the usual thermal transpiration (a rarefied gas flow induced in a channel or pipe with
a unidirectional temperature gradient; see, e.g., [4-7]) has a pumping effect [4]. That is, if two reservoirs
containing a rarefied gas are joined by a channel with a temperature gradient, the gas moves from the reservoir
at the cold end to that at the hot end. As a result, a pressure difference arises between the reservoirs, and a
steady state in which the thermal transpiration is counterbalanced by the flow due to the pressure gradient is
established finally. The pressure difference in this situation is the maximum one maintained by the channel.
In order to obtain a larger pressure difference, we should just make the channel longer, keeping the same
temperature gradient. However, this fact leads to a practical difficulty that for a long channel we have to
impose a huge temperature difference between both ends. In contrast, in the case of the above-mentioned one-
way flow caused by a periodic temperature distribution, we can make the channel as long as we wish without
any difficulty to obtain a large pressure difference. Therefore, it has a potential applicability as a pump or
compressor without any moving part. (See [1,8,9] for the detailed discussions and related references.)

In the present study, we investigate this one-way flow and its pumping effect in the case of a circular pipe
which seems to be equally (or even more) important in practical applications. As in [1], the standard DSMC
method by Bird [2,3] is employed as the solution method. It should be mentioned here that simple experiments
demonstrating this one-way flow clearly were carried out by Sone and coworkers recently [9,10].
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FIGURE 1. Pipe configuration and temperature distribution of the pipe wall.

PROBLEMS

We investigate the following two problems.
Problem I: Consider a rarefied gas in an infinitely long circular pipe with diameter D. A series of ring-
shaped ditches with depth d and width b is dug periodically with period L, as shown in Fig. l(a), where
(r, $, X) is a cylindrical coordinate system with X axis along the axis of the pipe. The pipe wall is kept
at temperature Tw with a piecewise linear and periodic distribution with period L as shown in Fig. l(b) (the
minimum and maximum temperatures are TO and TI , respectively) . The gas molecules are assumed to be hard
spheres and make the diffuse reflection on the pipe wall. Assuming that the flow field is axisymmetric and
periodic in X, investigate the steady flow induced in the pipe for a wide range of the Knudsen number on the
basis of kinetic theory. The periodic condition means that no pressure gradient is imposed externally.
Problem II: As shown below, a one-way flow is induced in Problem L To investigate its pumping effect,
consider the case where the pipe in Problem I is closed at X = 0 and ML (A/": positive integer) by diffusely
reflecting walls with temperature TI and investigate the pressure distribution in the pipe.

RESULTS OF COMPUTATION AND DISCUSSIONS

Since the DSMC scheme adopted here is essentially the same as that explained in [1] , we omit it for shortness
and give only the result. The following notation is used in this paper: p is the pressure, T the temperature,
vr, V0 (= 0), and vx the r, $, and X components of the flow velocity, pav the average density over a period
(Problem I) or the entire pipe (Problem II), 1Q the mean free path of the gas molecules in the equilibrium state
at rest with density pav, i.e., ^o = m/V^KdmPav with m and dm being the mass and diameter of a molecule,
Kn= IQ/D the Knudsen number, M the mass flow in the X direction per unit time and per unit cross-sectional
area of the part without ditches (7rD2.A/l/4: the mass-flow rate through the pipe), and R the specific gas
constant.

One-way flow

We first give the result for Problem I in the cases TI/TQ = 3, L/D = 2, b/D = 1/2 and various d/D, i.e.,
d/D = 1/2 (Case 1), 1/4 (Case 2), 1/8 (Case 3), 1 (Case 4), and 0 (Case 5).

Figure 2 shows some results of Case 1 (a given geometrical configuration) for different Knudsen numbers: the
flow velocity vector (vx, vr) and the isothermal lines for Kn= 0.05, 0.5, and 2 are shown in Figs. 2(a)-2(c) (note
the difference of the scale of the arrow), and the dimensionless mass- flow rate A/f/pa^(2JRTo)1/2 versus Kn is
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FIGURE 2. Induced one-way flow and mass-flow rate for Ti/To = 3, L/D = 2, b/D = 1/2, and d/D = 1/2 (Case 1).
(a) Kn = 0.05, (b) Kn = 0.5, (c) Kn = 0.2, (d) mass-flow rate M. vs Kn. In (a)-(c), the arrow indicates the flow velocity
vector ( v x j vr) at its starting point; the scale of (v2

x + v2)1/2/(2RTQ)1/2 = 0.05 [(a), (b)] or 0.02 [(c)] is shown in the
figures. The solid line indicates an isothermal line; the difference of T/Tb between neighboring lines is 0.1. In (d), o
indicates the present result, and • the result for the two-dimensional channel (cf. Fig. 5 in [1]).
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shown in Fig. 2(d). The numerical value of M/pav(2RTQ)1^2 is given in Table 1. In Fig. 2(d), the corresponding
result for the two-dimensional channel [i.e., M/pav(2RT0)l^D in [1] (Case 1 and Ti/T0 = 3); see Fig. 5 of [1]]
is also shown for comparison. A one-way flow is induced in the direction of the temperature gradient of the
non-ditch part of the pipe wall, and the maximum mass-flow rate is attained at around Kn = 0.2. The flow
vanishes in the free molecular gas (Kn=oo) [11] as well as in the continuum limit (Kn=0+). The mass-flow
rate per unit area is smaller in the case of a circular pipe.

In Fig. 3, the flow velocity vector and the isothermal lines at Kn = 0.5 are shown for various depths of the
ditches, i.e., for Cases 2-5. The mass-flow rate in these cases is given in Table 2. When there is no ditch (Case
5), the one-way flow vanishes (more precisely, the mass-flow rate becomes a small quantity of the order of the
error of the numerical computation). However, even the ditches with small depth cause an appreciable one-way
flow (Case 3). The mass-flow rate does not depend much on the depth of the ditches for d/D > 1/4. These
situations are qualitatively similar to those for the two-dimensional channel [1].

The data for the present DSMC computation is as follows. The initial distribution is the stationary
Maxwellian with density pav and temperature TQ. The gas region in the Xr plane (0 < X < L) is divided into
uniform square cells of size D/SQ x £)/80, and the total number of simulation particles is 100 x (number of cells)
(e.g., 8xl05 in Case 1). The time step At is 2t0/\/7rxlO~2 for Kn<0.5 and to/V^Kn xlO"2 for Kn> 0.5,
where to=(\/7r/2)(2^To)~1/2^o is the mean free time corresponding to ^o- The result shown above is the average
over more than 2xl06At (Kn=0.05), 106At (Kn=0.1), 5xl05At (Kn=0.2), 4xl05At (Kn=0.3), or 3xl05At
(other Kn) after the steady state is judged to have been established. For Case 1, a computation with coarser
cells [square cells of size D/40XD/40, 100 x (number of cells) particles in total] was also carried out, and it was
confirmed that the flow velocity vector and the isothermal lines agree fairly well with those by D/SQxD/SQ
system. The mass-flow rate obtained by the use of D/40xD/40 system is shown in the parentheses in Table 1.

Although the total mass flow across the cross section at X per unit time is independent of X theoretically, its
numerical result varies with X because of numerical error. The variation provides a good measure for accuracy.
The relative difference between the maximum and the minimum is 0.5% or smaller, 1% or smaller, and 2.5% or
smaller, respectively, in the cases where [A4/pa^(2^RTb)1//2]xl02 is larger than 1.5, larger than 0.5, and smaller
than 0.5 (except Case 5) for D/SOxD/SO system. Another measure of accuracy is the 6 component VQ of
the flow velocity, i.e., it should vanish theoretically but takes nonzero values in the DSMC computation. For
example, \ve\/(2RT0)1/2 is smaller than 6.60xlO~4 (Kn=0.05), 5.93xKT4 (Kn=0.2), 4.03xlO~4 (Kn=0.5),
and 4.43xlO~4 (Kn=2) in 80% of the cells in Case 1 [the maximum speed vmax in the corresponding cases is:
^max/(2^T0)1/2=3.07x!0-2, 4.45xlO"2, 3.11xlO~2, and 1.31xlO~2, respectively] for D/80xD/80 system.

TABLE 1. Mass-flow rate M versus Knudsen number for Ti/T0 = 3, L/D = 2,
b/D = 1/2, and d/D = 1/2 (Case 1). The value in the parentheses is the result
obtained by the use of a coarser cell system (see the second paragraph from the last in
this subsection).

Kn
0.05
0.1
0.2
0.3

M/paV£

1.476 x 10"2

2.083 x 10"2

2.345 x 10"2

2.225 x 10~2

) DT1 \ l /2jJLlJL 0 )

(1.427 x 10~2)
(2.060 x 10~2)
(2.326 x 10~2)
(2.234 x 10~2)

Kn
0.5
1
2
5

M/paV£

1.863 x 10~2

1.262 x 10~2

7.593 x 10~3

3.482 x 10~3

^To)1/2

(1.860 x 10~2)
(1.249 x 10~2)
(7.591 x 10~3)
(3.491 x 10~3)

TABLE 2. Mass-flow rate M at Kn = 0.5 for various depths of the ditches in the case Ti/Tb = 3,
L/D = 2, and b/D = 1/2.______________________________________________

d/D______0 (Case 5) 1/8 (Case 3) 1/4 (Case 2) 1/2 (Case 1) 1 (Case 4)
M/pav(2RT0)l/2 6.790 x 1(T5 1.040 x 1Q~2 1.506 x 1Q~2 1.863 x 1Q~2 1.921 x 1Q~2
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Q = 3, Kn = 0.5
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FIGURE 3. Induced one-way flow at Kn = 0.5 for various depths of the ditches in the case TI/TQ = 3, L/D = 2, and
b/D = 1/2. (a) d/D = 1/4 (Case 2), (b) d/D = 1/8 (Case 3), (c) d/D = 1 (Case 4), (d) d/D = 0 (Case 5). See the
caption of Fig. 2. The scale of (t& + v2)l/2/(2RTo)l/2 = 0.05 [(a)-(c)] or 0.01 [(d)] is shown in the figures.
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FIGURE 4. The distributions of PD/5(X) and KnL(X) in the closed pipe with various A/" for Ti/T0 = 3, L/D = 2,
b/D = 1/2, and Kn = 0.5. (a) the case corresponding to Case 1 (d/D = 1/2), (b) the case corresponding to Case 2
(d/D = 1/4).

Pumping effect

We next investigate Problem II in the case Ti/To = 3, L/D = 2, and b/D = 1/2. To begin with, we define
the average pressure Pa(X) near the center of the cross section at X by Pa(X)=2(2/a)2 J0 p(r, X)rdr and a
semi-local Knudsen number Kn£,(-X") by li,(X)/D, where IL(X) is the mean free path of the gas molecules in
the equilibrium state at rest with density being the average density pavL(X) in the interval [X, X + L], i.e.,
lL(X)=m/^/27rd^npavL(X). The £)/40x£)/40 system is used for the computation of the present problem.

Figure 4 shows the distributions of -Pp/sPO and Kn/,(JQ for Kn = 0.5 and JV"=1, 2,3,5, and 10 in the cases
corresponding to Case 1 (d/D = 1/2) and Case 2 (d/D = 1/4) in Problem I. The pressure rise over ten periods
is about 117% in Fig. 4(a) and about 88% in Fig. 4(b), whereas it is about 60% for the two-dimensional channel
corresponding to the case of Fig. 4(a) (see Fig. 11 of [1]). Although the induced one-way flow is stronger in
the two-dimensional channel system, the pressure rise is larger (or the pumping effect is stronger) in the pipe
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FIGURE 5. PD/$(X + L)/PD/5(X) and KnL(X + L) vs Kn^pf) for the closed pipe in the case Ti/T0 = 3, L/D = 2,
b/D = 1/2, and d/D = 1/2 (the case corresponding to Case 1). (a) A/" = 2, 3, 5, and 10 and Kn = 0.5, (b) A/" = 10
and various Kn. The data in the middle region [L < X < (A/"— 2)L] are shown by larger symbols, and those in the end
regions [0 < X < L and (A/" - 2)L < X < (A/" - 1)L] by smaller symbols.

system.
For a given set of the parameters (L/D, d/D, b/D, Ti/T0, Kn, A/"), the pressure ratio PD/5(X + L)/PD/5(X)

can be expressed as a function of Kn^^) because KHL(X) is monotonic in X. Figure 5(a) shows the former
versus the latter for A/"=2, 3, 5, and 10 in the case of d/D = 1/2 and Kn = 0.5. The data in the middle
region [L < X < (jV — 2)L] are shown by larger symbols, and those in the end regions [0 < X < L and
(A/" — 2)L < X < (A/"— l)L] by smaller symbols. The data with larger symbols lie on a single curve irrespective
of A/". The data with smaller symbols away from the middle region project upward and downward sharply.
The sharp projections are attributed to the end effect, and it is limited within the first and the last section.
Taking into account this feature, we can obtain the curve PD/§(X + L^/Pp/^X) versus Kn^(^) for a wide
range Kn^X), instead of the computation for large N, by joining the pieces of the curve obtained for a
fixed A/" (say A/" = 10) and different Kn. By this computation, the result for large A/" can be obtained by
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a smaller computer. Such an example is given in Fig. 5(b), where the curve for d/D = 1/2 is constructed
by the data for seven different Kn (with JV" = 10), i.e., Kn = 0.1, 0.17, 0.3, 0.5, 0.7, 0.9, and 1.2. As in
[1], from this curve and the line of KILL(X + L) versus Kn^(X) shown also in Fig. 5(b), one can estimate the
maximum compression ratio attained when two reservoirs are joined by a pipe consisting of a large number (say
A/"') of periods. Let X = 0 be the entrance of the low-pressure side and suppose that PD/S(O) and Knc,(0) are
approximately given by the pressure and the local Knudsen number there. Then, by reading [PD/$(L)/PD/§($),
KnL(L)}, [PD/5(2L)/PD/5(L), KnL(2L)}, ..., [PD/5(M'L)/PD/5((M' - l)L), KnL(N'L)\ successively from the
figure, we can obtain the total compression ratio Po/5(A/"/L)/PD/5(0), which is the approximate compression
ratio between the reservoirs. For example, a pipe system consisting of forty periods gives compression ratio
about 15 when Kn^(O) = 1 ~ 1.5. This is three times larger than compression ratio about 5 attained by the
corresponding two-dimensional channel system [1].
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